ACCELERATED CHEMISTRY FIRST SEMESTER TEST STUDY GUIDE

This is a list of ideas and concepts you should be able to do on the semester test.

(Formula Sheet) –given to you on the semester test includes solubility rules and activity series.

There are 100 multiple-choice questions on the Bring two #2 lead pencils, a good eraser, AN Bring something to study or read after you finish Try to get a good night's sleep Eat a good breakfast. This will help put you in a Drink water (H ₂ O). Avoid caffeine (C _B H ₁₀ N ₄ O ₂) a	the test
Hait 1 - Chaptes 2 - Data Analysis (15 que: determine the correct # of significant diginiterpret and write numbers in scientific no read and use graphs (2) use dimensional analysis to solve problem determine the appropriate units to use in a scientificant figures.	its in a measurement (4) notation (2) ms (3) measurements (4)
1. How many significant figures are in each of these meas a) 143 g b) 0.074 cm d) 10 800 cal e) 5.0 x 10 lbs	c) 57.048 m
 2. Complete the following calculations with the correct num * Rule for add and subtract: a. 420.4 + 19.57 = b. 184.5 / 15.987 = c. 97.5101 - 14.001 = d. 9.500 x 15 = 	e. 4.34 x 10 ¹² x 2.8 x 10 ⁻⁷ =
 3. Round the following numbers to 3 significant figures: a. 1.2489772 x 10²³ = b. 98451151 = 	c. 12.24456 = d. 0.0021445 =

a. 0.005784 = ____ b. 6548780000 = ____ c. 0.004499 = ____

5. Review the prefixes used to adjust metric base units. Rank these from smallest to largest. (1 = sm, 6=lg)

kilogram microgram gram milligram centigram megagram

6. 1 kg = _____ g

1 L = ______ mL

1 m = ____ cm

1 mL = _____ cm

7. Give the SI base unit for each quantity:

mass ————

liquid volume

density ———

--- KNO3

- CuSO4

×-NaCl

temperature

length

8. Complete the following conversions.

a. How many centimeters are in 2.195 meters?

b. How many liters are in 975.0 mL?

c. How many grams are in 45.15 kilograms?

9. Use dimensional analysis to solve the following problem. If each of your semester tests take 1.5 hrs, how many seconds will you be working on semester tests. (Assume that you have 6 semester tests).

Use the graph to answer questions 10-12

Solubility Graph

10. How many grams of CuSO₄ will dissolve at 110.0 deg. C?

- 11. Which chemical has the highest solubility (grams dissolved) at 30 deg C?
- Which chemical will have
 g dissolved at 20 deg C?

Included in Unit 6 - Chapter 3 - Properties and Changes (11 questions)

- distinguish between physical and chemical changes and properties (3)
- determine the indicators of a chemical or physical change (1)
- classify a substance as an element, mixture, or compound (4)
- 13. Circle the examples of matter in the following list:

concrete, acetone vapor, heat, air, sound, light, steam.

* Remember, matter is anything with mass and volume. It has to be made of atoms! 14. Define theses terms: a) mixture c) compound b) <u>pure substance</u> d) element e) Which of the above could be easily separated (by physical means)? For example filtration, using a magnet, evaporation..._____ f) Which could be separated, but only by chemical means (like a chemical reaction)? ______ 15. Look at the examples below. 1. Circle the elements 2. Underline the compounds 3. Put boxes around the mixtures 4. Draw arrows to the pure substances 5. Put stars next to the homogeneous mixtures. water Ne Salt aluminum Milk Salt water HCI (hydrochloric acid) River Water Alloy (steel) solution Glass Vinegar and Oil sand and water Coke with Ice 30% hydrogen peroxide

is a synonym for "homogenous mixture".

Cough syrup

zinc with water

Nitrogen

sugar (sucrose-C₁₂H₂₂O₁₁)

CO2

 16. Define physical property. 17. Define chemical property. 18. Define chemical change. a) What are the 4 indicators of a Chemical Change 1	e? 2. 4. indicator of a chemical change?
19. Define physical change. a)(like condensation, evaluation, evaluation, evaluation, evaluation and evaluation are condensation, evaluation and evaluation are condensation are condensation and evaluation are condensation are c	perties with "PP" perties with "CP" anges with "PC" anges with "CC"
Apple turns brown (rots)The nail is 15 cm longrubbing alcohol evaporatespropane is flammablemethane is burnedSanding woodThe liquid is yellowAlkaSeltzer added to water (lots of bubbling)NaCl does not react with waterChocolate meits in your pocket	A white precipitate formsWater boils at 100 degrees CelsiusCopper is ductileStatue of Liberty turns greenmetal is pounded flatThe density of gold is 19.3 g/mLhydrochloric acid is corrosivewater vaporizesiron rustsclay is rolled into a balliron is hard
21. List the physical and chemical properties of iron. Physical -	Chemical -

Unit 2 - Chapter 4 & 5 - Structure of the atom/Electron Configuration (20 questions)

Be able to:

- differentiate between and determine the number of protons, neutrons, and electrons in an atom (5)
- discuss the history of the atomic theory (1)
- define and determine the atomic #, mass #, and the average atomic mass of different isotopes (4)
- write, interpret, and relate electron configuration orbital notation and electron dot structure based on the location on the periodic table (4)
- relate chemical stability and the octet rule (1)
- Describe the wave mechanical view of the hydrogen atom (3)
- Describe the position and velocity of an electron in an atom (2)
- 22. Describe Rutherford's experiment. What did he discover about the atom?

23. Who discovered the electron?		What was he us	What was he using when he discovered it?		
24. Draw a pictu and indicate	ure of what the scient where the three sub	ists believe the atom atomic particles wou	i looks like. Try to di ild be located.	raw it somewhat in p	roportion
25. The smalles	t particle of any eleme	ent is called a(n)			
26. Select "P" p	oroton, "N" neutron,	and/or "E" electro	n. There may be mo	ore than one answer	
1- charge				o most of an element's	
no charge				lement's reactivity	mase
located in nucle				ain stability (form an lor	- W
	ity space" around nucleu	9	varies in diffe	erri stability (form an lor Frent isotopes of an elem	יי
relatively "big"	particle(s) (~1 amu)		same in differ	ent isotopes of the sam	nent
very small partic	cle(s) (1/1840 amu)		must he the e	ame in an element and i	e element
27.				arre in an element and i	l's ion
- Character	Protons	Electrons	Neutrons	Mass #	l AA11
Chromium-53 Argon-42				Md33 W	Atomic #
Potassium-42					
Potassium-41					
a	ns (the <u>symbol and r</u> An atom of oxygen w An atom of oxygen v	ith 8 neutrons.	ollowing isotopes:		
29. Define:					
a.	atomic number			-1 -1	
W			C	. atomic mass	
b. 1	mass number		d	d. isotope	
30. An element has	3 26 p+, 26 e-, and 29	n°. What is the ma	ss #?	What is the elem	ent?
31. Give the COMP	LETE electron config	urations and orbital			
		Grations and Orbital	notations for these e	lements.	
a. Na					
					
b. C					
с. Си (ехсер * со	otion!!!)nfiguration only				
* remember-elec * Use your period	trons fill from lowest t	o highest d, and f-blocks to de	(includes ene	ergy level and shape nd labeling.	!

32. Write the SHORTHAND or Noble Gas configuration a. Si	uration for the following elements:
b. Ca	
33. Draw an electron dot diagram to represent the	e valance electrons for the following elements:
a. Cl b. Ne	c. Sr
34. Looking at the periodic table, how would the	electron configurations for the following elements end?
a. S	c. Mg
b. Cl	d. Xe
	oron-10 and boron-11. The relative abundance of boron-10 is 80.1%. The atomic mass of boron-10 is 10.01 amu and the atomic mas ge atomic mass of boron?
36. What is a line spectra and how is one general	ted?
37. What is the difference between electrons being	ng in ground state and excited state?
Be able to: describe the properties of major identify properties of metals, non identify and use the trends on the	e periodic table (electronegativity, ionization energy, atomic radius,
38. Name the period 2 halogen	
39. Name the group 13, period 5 element	
40. Name the 2 period, alkaline-earth metal	
	al, or innertransition metal?
42. Is U a representative element, transition met	tal, or innertransition metal?

, 0		tal, MD metallold, or "NM" nonn	retal.	
	a. shiny, har	d, dense	g.	form positive ione
	b. forms neg	ative ions	h.	form positive ions
	c. like metals	and nonmetals	i.	brittle, usually solids and gases
	d. border the	stairstep	i.	semiconductors
	e. to the left of	of the stairstep	k.	poor conductors
		of the stairstep	l.	good conductors
			••	malleable and ductile
44. a)	Fe	Metal, metallold, or nonmetal?	Family?	
b)	Si			_
c)	Na			
d)	Не			
e)	н	· · · · · · · · · · · · · · · · · · ·		
f)	W .			
g)	Np .			
h)	Mg _			
	tching alkali me alkaline-e transition halogen noble gas	earth metal metal	a. 1s ² 2s ² 2 b. 1s ² 2s ² 2 c. 1s ² 2s ² 2 d. 1s ² 2s ² 2 e. 1s ² 2s ² 2	p ⁶ 3s ¹ p ⁵ n ⁶ 3s ² 3n ⁶ 4s ² 3d ⁹
46. Elem	nents in the same	have similar prop	perties because	
47. All _		are unreactive because the hav	re a full octet (fu	ll s and p orbitals)
48. Defin a) pe	e:			
-, p	JUg			
b) gr	oup			
c) fai	mily			

d) periodic law

е)	atomic radius (what is the trend?)				
f)	ionization energy (what is the trend?)				
g)	electronegativity (what is the trend?)				
49. Cir	cle the element with the largest ionization	n energy:			
70. 0	a) P, N	b) Rb, Fr, Li		c) Si, P, Mg	
50. C	rcle the element in each pair that has the	highest electronegativity:			
	a) K or Mg	B) Mg or S		c) F or He	
51. C	rcle the element with the largest atomic r	adius.			
	a) Alor B	b) Fe or Cu		c) Br or Cl	
	4 - Chapter 3 Jonie Compound Be able to: determine the properties of ion determine whether if bond is ion write formulas and names for in thy do ionic compounds form?	ic and metallic bonds (3) onic based on the location on ons and ionic compounds (7)	the periodic t	able (1)	
	tate the octet rule.				
	hat happens to the valence electrons when				
55. L	ist 4 properties of compounds that have i	onic bonds.			
	1)				
	2)				
	3)				
	What causes most of these properti	0.07	(strong	network or +/- attrac	ctions)
5 6 . /	* What causes most of these properti	es: and a nonmeta	llic element.		
57. \	What is a cation?	and an anion?	-		

58. What	is the charge on the following ions?			
a)	silver ion			
b)	zinc ion			
c)	lead (IV) ion			
d)	chloride ion (now has same e-config as)		
	potassium ion (now has same e-config as _			
	ete the table for these ionic compounds:			
	Name	Formula		
a)	ammonium oxide	1 Official		
b)				
c)		Na₂SO₄		
d)		K₃PO₄		
	zinc hydroxide			
e)	iron (II) chloride			
Unit 5 - Ci Be at	expanded octets) (4) use Lewis Structures to determine polarity (2) use electronegativity to determine the bond type (3) Determine the orbital hybridization, sigma and pi bonding in covalent compounds (2) determine the type of bond based on electronegativity differences (3)			
61. Why do co	ovalent compounds form?			
62. What happens to the valence electrons when a covalent compound forms?				
63. Covalent bonds normally form between 2 elements.				
64. List 4 prop	erties of covalently bonded compounds:			
1)	3)			
2)	4)			
65. Another na	me for covelent compounds is			

	Nai	me_	<u>Formula</u>	lonic or Molecular?	
6 6 .	nitrogen trioxic	le _			-
67.	calcium nitrate	-			-
6 8 .	trisulfur heptac	oxide _			,
69.			NH ₄ CI		-
70.			P ₂ O ₅		-
71.	List the prefixe	s!!!!	ii ia a liia iha iha i	abla	
72.	What are the 8	shapes of molecules w	76 studied? Complete the t		Can this shape
		Name of shap	e Picture	Lewis Structure	be polar??
	a)				
	b)				
	c)				
	d)				
	е)				
	f)				
	g)				
	h)				

Lewis Structure

Polar Molecule?

shape

73. SCI₂

Molecular formula

74. CO₂

75.	SiF ₆			
76.	N ₂			
77. What w	ere the Lewis Structure exc	eptions we learned in	Accelerated Chemistry?	
78. Describ <u>nor</u>	e how electrons are shared/ polar bonds	transferred and why polar bond	in <u>s</u>	ionic bonds
79. Use the	electronegativities to determ	nine if the following b	onds are nonpolar, polar o	or ionic.
	I-H			
b) N	a-F	(Na e-neg is 0.93	and F e-neg=3 98)	
c) H	-C	(H e-neg = 2.20 a	nd C e-neg = 2.55)	
	re importantlyionic is alw			a and pi bonds in the CO2 molecule
Unit 6 - CA Be ab	apter 10 Chemical Releto: distinguish between the fix write and balance chemical interpret the law of consenapply the rules of solubility	re types of chemical al reactions (3)	reactions (3)	
81. Matching	I A +BY → AY+B			
	$A + B \rightarrow AB$		a. combustion	
	AY+BX→ AX + BY		b. synthesisc. decomposition	
	C _x H _x (hydrocarbon)+O ₂ → AB→A+B	°CO₂+H₂O	d. single displaceme e. double displacem	ent nent
82. <i>Balance</i> an	d <i>identify</i> the type of reaction	of the follo	wing:	
	_C +C			

	b. $C_4H_{10} + C_2 \rightarrow CO_2 + H_2U$
	c. $H_2O_2 \rightarrow H_2O + O_2$
	dPb +Hg₂SO₄ →PbSO₄ +Hg
	eNaCl +AgNO₃ →AgCl +NaNO₃
	hCr +SnCl₄ →Sn +CrCl₂
	Describe how you might get "No Reaction" for a Single Displacement reaction: What about Double Displacement:
8	4. Write a balanced chemical equation for the following word descriptions.
	a. Propane gas (C ₃ H ₈) combusts.
	b. The synthesis of potassium bromide KBr.
	c. Iron reacts with a solution of copper (II) nitrate.
	d. NaCl + F₂ →
	Q. 19aOI + 12 /
	and a second and the
	e The reaction of barium chloride solution and sodium carbonate solution.
	85. Label the coefficient and the subscript: 3 H ₂ O
	* Know what each stands for!!!
	- Know what each stance is we
	86. Which side of the reaction arrow are the reactants on?
	87. List the 7 diatomic elements.
	88. We balance chemical equations because cannot be created or destroyed according to the law of conservation of

89. Write a) the sodium hydroxid	e balanced reaction de reacts with a solu	and b) the net ionic e	quation for the reaction that occurs	when a solution of
a)				
b)				
lanis 7 As as				
	1 – The Mole (1			
		atoms =	grams ning 3.33x10 ²⁴ atoms.	
	riamosi oi moles o	a gold sample contai	ning 3.33x10 ²³ atoms.	
92. Calculate the	grams of 1.25 mole	es of magnesium.		
93. Calculate the	grams of 1.34x 10 ²⁵	atoms of Lead.		
94. Determine the	molar mass of amn	nonium dichromate (N	H ₄) ₂ Cr ₂ O ₇ .	¥
				_
95. Circle the emp	irical formulas, squa	are the molecular form	ulas.	
	C ₃ H ₆ O ₃ ,	CH₂O,	C ₆ H ₁₂ O ₆	
96. Determine the	empirical formula fo	r a compound having	30.68% mercury, 12.87% oxygen, ar	nd 6.45% sulfur.
				and the second s
97. Caffeine is a commass is 194.19	mpound that was for g/mol calculate its m	und to have the empiri nolecular formula.	ical formula - C₄H₅N₂O. If its molar	

- 98. If the molecular compound of glucose is C₆H₁₄O₆, what is the empirical formula?_____
- 99. Describe how you could get the molecular formula from the empirical formula.
- 100. Calculate the percent composition of Lead (II) chloride PbCl₂.

ACCELERATED CHEMISTRY 1st SEMESTER TEST

FORMULA SHEET

Element	Reaction	<u>Halogen</u> <u>Reaction</u>
Li Rb K Ba Ca	React with cold H ₂ O and acids, replacing hydrogen	$ \begin{cases} F_2 \\ Cl_2 \\ Br_2 \end{cases} $ Listed from most reactive to least
Na)		Solubility Rules
Mg Al Mn Zn Fe	React with acids or steam, but usually not liquid water to replace hydrogen	NO ₃ ¹⁻ All nitrates are soluble. Cl ¹⁻ All chlorides are soluble except AgCl, Hg ₂ Cl ₂ , PbCl ₂ SO ₄ ²⁻ Most sulfates are soluble; exceptions include: SrSO ₄ , BaSO ₄ , and PbSO ₄ , CaSO ₄ is slightly soluble. CO ₃ ²⁻ All carbonates are insoluble except
\begin{cases} Ni \ Sn \ Pb \end{cases}	React with acids but not water, to replace hydrogen	those in Group 1 elements and NH ₄ ⁺ OH ¹⁻ All hydroxides are insoluble except those of Group 1 elements, Sr(OH) ₂ and Ba(OH) ₂ ; Ca(OH) ₂ is slightly soluble.
$ \begin{cases} H_2 \\ Cu \\ Hg \end{cases} $	React with oxygen to form oxides	Signify soluble. S ² All sulfides except those of Group 1 and 2 elements and NH ₄ ⁺ are insoluble.
Ag Pt Au	Mostly unreactive	

ACCELERATED CHEMISTRY FIRST SEMESTER TEST STUDY GUIDE

This is a list of ideas and concepts you should be able to do on the semester test.

(Formula Sheet) -given to you on the semester test includes solubility rules and activity series.

Other information and tips

- There are 100 multiple-choice questions on the district semester test.
- Bring two #2 lead pencils, a good eraser, AND a calculator.
- Bring something to study or read after you finish the test
- Try to get a good night's sleep
- Eat a good breakfast. This will help put you in a good mood and help your brain function
- Drink water (H₂O). Avoid caffeine (C₈H₁₀N₄O₂) and sugar (C₁₂H₂₂O₁₁)

Unit 1 - Chapter 2 – Data Analysis (15 questions)

Be able to:

- determine the correct # of significant digits in a measurement (4)
- interpret and write numbers in scientific notation (2)
- read and use graphs (2)
- use dimensional analysis to solve problems (3)
- determine the appropriate units to use in measurements (4)

- 1. How many significant figures are in each of these measurements?

 - a) 143 g ______ b) 0.074 cm ______
- c) 57.048 m

- d) 10 800 cal 3
- 2. Complete the following calculations with the correct number of Sig Figs:
- * Rule for add and subtract: \underline{least} $\underline{Decimals}$ * Rule for multiply and divide: \underline{least} # Sig Figs a. $420.4 + 19.57 = \underline{440.0}$ e. $4.34 \times 10^{12} \times 2.8 \times 10^{-7} = \underline{1.2 \times 10^{-6}}$

 - b. 184.5/15.987 = 1.54
 - c. 97.5101 14.001 = 83.509
 - d. $9.500 \times 15 = 40$

- f. If 9.2 g are removed from a 12.75 g sample, how many grams remain? 3 69
- g. The length of a square is 105.07 cm and the height is 55.64cm, what is the 420,28cm2?

- 3. Round the following numbers to 3 significant figures:
 - a. $1.2489772 \times 10^{23} = 1.25 \times 10^{23}$
 - b. 98451151 = 98500000

- c. 12.24456 = 12.2
- d. 0.0021445 = 0.00214
- 4. Round the following numbers to 3 sig figs and write in scientific notation:
 - a. $0.005784 = \frac{5.78 \, \text{k/o}^{-3}}{}$

 - b. $6548780000 = 6.55 \times 0^{9}$ c. $0.004499 = 4.50 \times 0^{-3}$

5. Review the prefixes used to adjust metric base units. Rank these from smallest to largest. (1 = sm, 6=lg)

kilogram

6.

 $1 \text{ kg} = \frac{1000}{} \text{g}$

1 L = 1000 mL

1 m = /60 cm

7. Give the SI base unit for each quantity:

mass

liquid volume

length

density

- temperature Complete the following conversions.

- a. How many centimeters are in 2.195 meters? 2,195 m. 100 cm 2219.5 cm
 b. How many liters are in 975.0 mL? 975,0ml 11 19750 d.
- c. How many grams are in 45.15 kilograms? 45.15 kg 1040 4 245150 g
- 9. Use dimensional analysis to solve the following problem. If each of your semester tests take 1.5 hrs, how many seconds will you be working on semester tests. (Assume that you have 6 semester tests).

6 Semester Teasts. 15t 1 hr 1 min = 32400sec

Use the graph to answer questions 10-12

Solubility Graph

10. How many grams of CuSO₄ will dissolve at 110.0 deg. C?

11. Which chemical has the highest solubility (grams dissolved) at 30 deg C?

12. Which chemical will have 10 g dissolved at 20 deg C? Kysou

Included in Unit 5 - Chapter 3 - Properties and Changes (11 questions)

Be able to:

- distinguish between physical and chemical changes and properties (3)
- determine the indicators of a chemical or physical change (1)
- classify a substance as an element, mixture, or compound (4)
- 13. Circle the examples of matter in the following list:

concrete, acetone vapor, heat, air, sound, light, steam.

- Remember, matter is anything with mass and volume. It has to be made of atoms!
- 14. Define theses terms:

a) mixture Two or more pure substances, physically combined

c) compound Two or more pure gobstances chemically combined

b) <u>pure substance</u>

one element or one compound

Simpliet form of pure gubstance - 1 true of a ton

- e) Which of the above could be easily separated (by physical means)? For example filtration, using a magnet, evaporation... Michael
- f) Which could be separated, but only by chemical means (like a chemical reaction)?

15. Look at the examples below.

- 1. Circle the elements
- 2. Underline the compounds
- 3. Put boxes around the mixtures
- 4. Draw arrows to the pure substances
- 5. Put stars next to the homogeneous mixtures.

water < (Ne) C aluminum \ Milk 7 > 7 HCI (hydrochloric acid) < River Water solution + Glass 7 / sand and water Coke with Ice sugar (sucrose-C₁₂H₂₂O₁₁) < Nitrogen 🛹 CO2 4 Cough syrup

Salt 🔑

Salt water

Alloy (steel)

Vinegar and Oil

30% hydrogen peroxide

zinc with water

• Solvtion is a synonym for "homogenous mixture".

16. Define physical property. Describes phys	sical Characteristic of Substance
17. Define chemical property. Describes how	Substance interacts w/ constant
a) What are the 4 indicators of a Chemical Chan	cul schemical properties etimose
3. Asmell	4. praduce precipitate or ex)
 Why is color a physical property, but color change is ar 	n indicator of a chemical change?
19. Define physical change. Change in 9, a) State Change (like condensation, e	vaporation, freezing, boiling) are physical changes.
 20. In the following examples: 1. label the physical pr 2. label the chemical p 3. label the physical ch 4. label the chemical c 	roperties with "CP" nanges with "PC"
The nail is 15 cm long C rubbing alcohol evaporates propane is flammable methane is burned Sanding wood The liquid is yellow CC AlkaSeltzer added to water (lots of bubbling) NaCl does not react with water Chocolate melts in your pocket	CC A white precipitate forms PP Water boils at 100 degrees Celsius PP Copper is ductile CC Statue of Liberty turns green PC metal is pounded flat PP The density of gold is 19.3 g/mL P hydrochloric acid is corrosive water vaporizes CC iron rusts C clay is rolled into a ball Prom is hard
21. List the physical and chemical properties of iron. Physical - All Metallice Properties	Chemical - Reacts with acid to Form Hz gas
	number of protons, neutrons, and electrons in an atom

C

define and determine the atomic #, mass #, and the average atomic mass of different isotopes (4)

write, interpret, and relate electron configuration orbital notation and electron dot structure based on the location on the periodic table (4)

relate chemical stability and the octet rule (1)

Describe the wave mechanical view of the hydrogen atom (3)

Describe the position and velocity of an electron in an atom (2)

22. Describe Rutherford's experiment. What did he discover about the atom?

Nuclear Atomic mode: Educieus) Gold Foll Experiment

23. Who disco	vered the electron?	JJ Thompso	What was he us	sing when he discove	ered it?
	Ca	thode Ray	Tube		
24. Draw a pic and indical	ture of what the scienti e where the three suba	sts believe the atom atomic particles would	looks like. Try to d	raw it somewhat in p	roportion
		The second	- pto		
25. The smalle	t particle of any element			_	
			60,000		
1+ charge	proton, "N" neutron,	and/or "E" electro	determines	element's identity	
no charge				to most of an element's	mass
oraled in nue	loue			element's reactivity	
0.5	npty space" around nucleu			gain stability (form an lo	
relatively "bio	" particle(s) (~1 amu)	,,		ferent isotopes of an ele	
very small pai	ticle(s) (1/1840 amu)			erent isotopes of the sar	
27.	, , , , , , , , , , , , , , , , , , , ,		- must be the	same in an element and	it's ion
	Protons	Electrons	Neutrons	Mass #	l Atom:- 4
Chromium-53	24	24	29	53	Atomic #
Argon-42	15	14	24	42	18
Potassium-42 Potassium-41	10	19	23	42	19
	a. An atom of oxygen vb. An atom of oxygen	with 9 neutrons.	17 Oxy	gen-16 igen-17	
29. Define:	*		•		
į.	a. atomic number #	of pt.		c. atomic mass	w moss of
	o. mass number pt			d. isotope of the	elements - Som
	nas 26 p+, 26 e-, and 2		V	What is the ele	
31. Give the CO	MPLETE electron conf	igurations and orbita	I notations for these	elements.	
a. Na	152 Z52 Zp6	35 7504d	y		
b. C _	152 252 2ps	to egg.			
	ception!!!) /527 configuration only	152 1 pt 352	3pe 45 * 3d	6	
remember-e Use your pe	lectrons fill from lowes riodic table and the s,	t to highest <u>Enec</u> o, d, and f-blocks to	(includes education of the determine the order	energy level and sha and labeling.	pe!

7 11 7	or the following elements:
a. Si	
the valance	e electrons for the following elements:
Draw an electron dot diagram to represent the valance	C St
**	je: c. Sr S
Looking at the periodic table, how would the electron	configurations for the following elements end?
a. S 4-3p4	c. Mg d. Xe
b. CI	d. Xe
5. Boron has two naturally occurring isotopes, boron-10 19.9%; the relative abundance of boron-11 is 80.1%. of boron-11 is 11.01 amu. What is the average atomic (199 ×10.01 amu)	a many of boron?
7. What is the difference between electrons being in gro	eray transitions for a specific element ound state and excited state?
ground state la	weest en ergy possible
excited thate	when excited Grenery
Init 3 - Chapter 6 & 7 The Periodic Table an Be able to:	nd the Periodic Law/The Clements (17 questions)
 describe the properties of major groups of identify properties of metals, non-metals, identify and use the trends on the periodic abiding effect, puckers charge, oxidation. 	and metalloids (1) c table (electronegativity, ionization energy, atomic radius,
 describe the properties of major groups of identify properties of metals, non-metals, identify and use the trends on the periodic shielding effect, nuclear charge, oxidation relate electron configuration and ion form table (2) 	and metalloids (1) c table (electronegativity, ionization energy, atomic radius,
describe the properties of major groups of identify properties of metals, non-metals, identify and use the trends on the periodic shielding effect, nuclear charge, oxidation relate electron configuration and ion form table (2) 8. Name the period 2 halogen	and metalloids (1) c table (electronegativity, ionization energy, atomic radius,
describe the properties of major groups of identify properties of metals, non-metals, identify and use the trends on the periodic shielding effect, nuclear charge, oxidation relate electron configuration and ion form table (2) 8. Name the period 2 halogen	and metalloids (1) c table (electronegativity, ionization energy, atomic radius,
 describe the properties of major groups of identify properties of metals, non-metals, identify and use the trends on the periodic shielding effect, nuclear charge, oxidation relate electron configuration and ion form table (2) 	and metalloids (1) c table (electronegativity, ionization energy, atomic radius,
describe the properties of major groups of identify properties of metals, non-metals, identify and use the trends on the periodic shielding effect, nuclear charge, oxidation relate electron configuration and ion form table (2) 8. Name the period 2 halogen 9. Name the group 13, period 5 element	and metalloids (1) c table (electronegativity, ionization energy, atomic radius, n number) (3) lation and oxidation number based on the location on the period TU 3e

43. A	Answer "MT" m	etal, "MD" metalloid, or "NM" nonn	netal.	
		rd, denseMT	q.	form positive ions_M_T
	b. forms ne	gative ions	h.	
	c. like meta	is and nonmetals $M \mathcal{V}$	i,	brittle, usually solids and gases
	d. border the	e stairstep <u>M 0</u>	j.	poor conductors MM
	e. to the left	of the stairstep	k.	good conductors
	f. to the righ	it of the stairstep	J.	malleable and ductile
44. a)	Fe	Metal, metalloid, or nonmetal?	Family?	
b)	Si	MID		ng, tron
720		1111		roup 14
c)	Na		A	1 Kali
d)	He	$\mathcal{N}\mathcal{M}$	/	Voble 6-us
e)	Н	WM	4	done a lAlver
f)	W	MT	+-	2,04e/1////tea(;
g)	Np	MI	-	ansition
	***	Makel		mer transition/Actionide
h)	Mg	Meral		Thali Farm
45. Ma	🖰 🎒 alkali n	-earth metal n metal	 a. 1s²2s²2 b. 1s²2s²2 c. 1s²2s²2 d. 1s²2s²2 e. 1s²2s²2 	2p ⁶ 3s ¹ 2p ⁵ 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁹
				Same Hof valunce of
47. All _	Nobles	are unreactive because the ha		
48. Defin	۵.	are smeather because the na	ave a full octet (fu	ull s and p orbitals)
a) p	eriod	v		
b) gr	oup Colc			
c) fa	mily 9 ro.	P		
d) pe	riodic law	lements have good	a periodice	refitions in
	the	lements have grow	esical p	roperties based

e)	atomic radius (what is	the trend?)	1 -
	Pecreas	ses ->	
	ionization energy (wha	at is the trend?)	
f)	Increase:	s ->	
	Decreuses u		
g)	electronegativity (wha	at is the trend?)	
	1 1e reuse	(A)	
Professor 100-	Decreuse		
49. C	_	e largest ionization energy: b) Rb, Fr, Li	c) Si, P, Mg
	a) P.N N		
50. C	ircle the element in each	h pair that has the highest electronegativity:	
	a) K or Mg	B) Mg or S	c) F or He
51. C	circle the element with th	ne largest atomic radius.	
	a) Al or B	b) Fe or Cu	c) Br or Cl
	La Chantes & Ton	nie Compounds (12 questions)	
CALCAGE		are competent of	
	Be able to.		
	 determine the 	ne properties of ionic and metallic bonds (3) The ther if bond is ionic based on the location on the	e periodic table (1)
	 determine the determine where the determine where the determine where the determine the determine where the d	hether if bond is ionic based on the location of and as and names for ions and ionic compounds (7)	
52.	 determine the determine where the determine where the determine with the determine which is a determine the determine the determine which is a determine the determine the determine the determine which is a determine the determine the determine the determine which is a determine the determine the	as and names for ions and ionic compounds (7)	stuble actet
	 determine the determine where the determine where the determine with the determine which is a determine the determine the determine which is a determine the determine the determine the determine which is a determine the determine the determine the determine which is a determine the determine the	as and names for ions and ionic compounds (7)	stuble actet
53.	 determine the determine with determine with determine with determine write formula. Why do ionic compounds State the octet rule. 	distant is bond is local based on the localism of the local based on t	stuble atet to get 8 in their outer
53.	 determine the determine with determine with determine with determine write formula. Why do ionic compounds State the octet rule. 	distant is bond is local based on the localism of the local based on t	stuble atet to get 8 in their outer
53. 54.	determine the determine with determi	distance electrons when an ionic bond is formed?	stuble atet to get 8 in their outer
53. 54.	determine the determine when determi	distant is bond is local based on the localism of the local based on t	stuble atet to get 8 in their outer
53. 54.	determine the determine when determi	Is form? A stability achieve a share e share e share e share e lectrons when an ionic bond is formed? In the location is located in the location (7) Is form? A stability achieve a share e shar	stuble aft to get 8 in their outer Transfer
53. 54.	determine the determine when determi	Is form? A stability achieve a share e share e share e share e lectrons when an ionic bond is formed? In the location is located in the location (7) Is form? A stability achieve a share e shar	stuble aft to get 8 in their outer Transfer
53. 54.	determine the determine when the determine when the write formula. Why do ionic compounds. State the octet rule. What happens to the value of compounds. 1) M 1) M 2) B H 2) B H 4 Cood Co	As and names for ions and ionic compounds (7) Is form? A stability achieve a special achieve a special lose or share e special lose or share e special achieve a special special achieve a special s	to get 8 in their outer Transfer
53. 54.	determine the determine when the determine when the write formula. Why do ionic compounds. State the octet rule. What happens to the value of compounds. 1) M 1) M 2) B H 2) B H 4 Cood Co	As and names for ions and ionic compounds (7) Is form? A stability achieve a special achieve a special lose or share e special lose or share e special achieve a special special achieve a special s	to get 8 in their outer Transfer
53.54.55.	determine the determine when write formula write formula. Why do ionic compounds. State the octet rule. What happens to the value of compounds. 1) I Mile of the compounds. 2) Briffe of compounds. 4) Solic of the compounds. What causes most of the walk of the compounds.	st of these properties? In the location is located in the location as and names for ions and ionic compounds (7) Is form? If y tability achieve a special as a solution when an ionic bond is formed? In advanced as a solution median as a	to get 8 in their outer Transfer [fed] (strong network or +/- attractions)
53.54.55.	determine the determine when write formula write formula. Why do ionic compounds. State the octet rule. What happens to the value of compounds. 1) I Mile of the compounds. 2) Briffe of compounds. 4) Solic of the compounds. What causes most of the walk of the compounds.	As and names for ions and ionic compounds (7) Is form? A stability achieve a special achieve a special lose or share e special lose or share e special achieve a special special achieve a special s	to get 8 in their outer Transfer [fed] (strong network or +/- attractions)
53.54.55.56.	determine the determine when write formula. Why do ionic compounds. State the octet rule. What happens to the valuation of compounds. 1) Market Aproperties of compounds. 2) Brittle 3) Cood Cood 4) What causes most an ionic bond is between	st of these properties? The food is ionic based on the location as and names for ions and ionic compounds (7) The form? The first particle of the food is form? The food is food is form? The food is form? The food is form? The food is food is form? The food is food is form? The food is food is food is form? The food is food is food is food is food is form? The food is food	fed (strong network or +/- attractions) c element.
53.54.55.56.	determine the determine when write formula. Why do ionic compounds. State the octet rule. What happens to the valuation of compounds. 1) Market Aproperties of compounds. 2) Brittle 3) Cood Cood 4) What causes most an ionic bond is between	st of these properties? In the location is located in the location as and names for ions and ionic compounds (7) Is form? If y tability achieve a special as a solution when an ionic bond is formed? In advanced as a solution median as a	fed (strong network or +/- attractions) c element.

58. What i	is the charge on the following ions?				
	a) silver ion Agt				
b)	zinc ion 2n2+				
c)	lead (IV) ion Pb4+				
d)	chloride ion (now has same e-config as	AC			
e)	potassium ion (now has same e-config as	Ar			
59. Comple	ete the table for these ionic compounds:				
	Name	Formula			
a)	ammonium oxide	(M/Har) O			
b)	Bedium Sulfax	Na ₂ SO ₄			
c)	Poterssion Phas photo	K ₃ PO ₄			
d)	zinc hydroxide	70 (04)			
e)	iron (II) chloride	Forh			
60 a	use Lewis Structures to determine shapes of molecules (inclexpanded octets) (4) use Lewis Structures to determine polarity (2) use electronegativity to determine the bond type (3) Determine the orbital hybridization, sigma and pi bonding in compounds (2) determine the type of bond based on electronegativity differe write formulas and names for covalent molecules (4)	covalent ences (3)			
61. Why do c	ovalent compounds form? J Energy be Stakk, 5	share to get 8 in outershal			
62. What hap	pens to the valence electrons when a covalent compound forms	s? Shure			
63. Covalent	bonds normally form between 2	elements.			
	perties of covalently bonded compounds:				
1)	50FF 3)	VBIP.			
2) 🧳	poor conductors 4)	All 3 States			
65. Another na	ame for covelent compounds is Molecular Compour				

	<u>Nan</u>	ne e	<u>Formula</u>	Ionic or Molecular?	× ,		
6 6 .	nitrogen trioxid	e	10 U2	Moleculus Fonic			
67.	calcium nitrate		Ca (NO2)2	Prisulfer heptar	morde		
6 8 .			1301				
69.	Ammonic	om Chloride	NH¹CI	Danc			
70.	diphospho	nous pentoxiale	P ₂ O ₅	Mokwia			
20202	71. List the prefixes!!! <u>Mono, di, tri, tefra, penta, hera, hepfa, octa, non, dec</u> 72. What are the 8 shapes of molecules we studied? Complete the table. Example Can this shape						
72.	What are the 8	shapes of molecules we st	ddied: Complete and	Example	Can this shape		
		Name of shape	Picture	Lewis Structure	be polar??		
	a)	Linear	0-0-0	0=C=0 H-C=W	Yes		
	b)	Bent	Sey	A WI	Ves-always		
	с)	Trigonal planer	000	Be by	Yes		
	d)	Trigonal	De la	N-17	Yes-a hungs		

Tetrahedoul

e)

f)

g)

h)

ptiony

1				
	Molecular formula	Lewis Structure	shape	Polar Molecule?
73.	SCI ₂	ici ș ci:	Gent Bent	Yes
74.	CO ₂	0-C=0	Linear	NO

C-C C-C

Feta Ves

Yes

b. $\frac{2}{C_4H_{10}} + \frac{13}{13}O_2 \rightarrow \frac{8}{10}CO_2 + \frac{10}{10}H_2O$	Combustin
c. $\frac{1}{2}$ H ₂ O ₂ \Rightarrow $\frac{1}{2}$ H ₂ O +O ₂	decomp
dPb +Hg ₂ SO ₄ \rightarrow PbSO ₄ + $\frac{Z}{}$ Hg	Birgle replacement
a NaCl + AgNO₃ → AgCl + NaNO₃	dable replacement
h. $\frac{1}{2}$ er + $\frac{1}{2}$ SnCl ₄ \Rightarrow $\frac{1}{2}$ Sn + $\frac{1}{2}$ CrCl ₂	Single
83. Describe how you might get "No Reaction" for a Single Displacement What about Double Displacement:	
84. Write a balanced chemical equation for the following word description	ons.
a. Propane gas (C₃H₀) combusts.	
b. The synthesis of potassium bromide KBr.	20,
2Kest Bruer 72KBr	
c. Iron reacts with a solution of copper (II) nitrate.	
Fe + Cu(NO3)2 -> F	Ge(NO3)2 + Cu
d. NaCl + F₂ →	
Wallow + =z -> ENOF	+ C/2
e The reaction of barium chloride solution and sodium carbon.	ate solution.
13aCl2 + NazCO3 -> Z	
Baz+ + CO32- =	-/
85. Label the coefficient and the subscript: 3 H ₂ C	molecules # of a tems in a molecule
* Know what each stands for!!!	ent subscript
# CF	molecules a molecule
86. Which side of the reaction arrow are the reactants on?	<u> </u>
87. List the 7 diatomic elements. Hz, Nz, Oz, Fz, C	12,1312, Iz
88. We balance chemical equations because Mass (a kins) the law of conservation of Mass.	_ cannot be created or destroyed according to

89. Write a) the balanced reaction and b) the net ionic equation for the reaction that occurs when a solution of sodium hydroxide reacts with a solution of copper (II) sulfate.
a) ZNuOH + CUSOY -> Nazsoy + Cu(OH)z(g)
b) CUZ+ 20H -> CU(OH)2
Unit 7 - CA 11 – The Mole (10 questions)
90. 1 mole Fe = 6,02, 1023 atoms = 55.8 grams
91. Calculate the number of moles of a gold sample containing 3.33×10 ²⁴ stars
3,33×102 Extours (02×102 Tatoms =)5,53 mol
92. Calculate the grams of 1.25 moles of magnesium.
1,25mo1.24,3 g = 30,4g
93. Calculate the grams of 1.34x 10 ²⁵ atoms of Lead.
1,34×1025 atoms. 1 mos 201,29 = 6/4610g
94. Determine the molar mass of ammonium dichromate (NH ₄) ₂ Cr ₂ O ₇
95. Circle the empirical formulas, square the molecular formulas.
$C_3H_6O_3$, CH_2O , $C_6H_{12}O_6$
96. Determine the empirical formula for a compound having 80.68% mercury, 12.87% oxygen, and 6.45% sulfur.
80.684 Hg. 100590 = 1402mol /
$80.68y$ Hg. $\frac{1}{200.59g} = .402 mol$ $12.87g$ $\frac{1}{16.0} = .809 mol$ $\frac{1}{16.0} = .100 mol$
97. Caffeine is a compound that was found to have the empirical formula – $C_4H_5N_2O$. If its molar
mass is 194.19 g/mol calculate its molecular formula.
A-1 C34,049 1949

98. If the molecular compound of glucose is C₆H₁₄O₆, what is the empirical formula?

99. Describe how you could get the molecular formula from the empirical formula.

Find Molar Mass of Empirical to Molar Mass of Empirical to Molar Mass of Empirical to Molar Mass of Molar Mass of Molar Mass

100. Calculate the percent composition of Lead (II) chloride PbCl₂.

M2 PbC/2 = 278,2

Ph: 207.2 9x100 {74,5%)

C1 = 719 x00 25.5%

ACCELERATED CHEMISTRY 1st SEMESTER TEST

FORMULA SHEET

Element	Reaction	Halogen Reaction
Li Rb K Ba Ca	React with cold H_2O and acids, replacing hydrogen	$ \begin{cases} \mathbf{F_2} \\ \mathbf{Cl_2} \\ \mathbf{Br_2} \end{cases} $ Listed from most reactive to least
Na		Solubility Rules
Mg Al Mn Zn Fe	React with acids or steam, but usually not liquid water to replace hydrogen	NO ₃ ¹⁻ All nitrates are soluble. Cl ¹⁻ All chlorides are soluble except AgCl, Hg ₂ Cl ₂ , PbCl ₂ SO ₄ ²⁻ Most sulfates are soluble; exceptions include: SrSO ₄ , BaSO ₄ , and PbSO ₄ , CaSO ₄ is slightly soluble.
\begin{cases} Ni \ Sn \ Pb \end{cases}	React with acids but not water, to replace hydrogen	CO ₃ ²⁻ All carbonates are insoluble except those in Group 1 elements and NH ₄ ⁺ OH ¹⁻ All hydroxides are insoluble except those of Group 1 elements, Sr(OH) ₂ and Ba(OH) ₂ ; Ca(OH) ₂ is
$ \begin{cases} H_2 \\ Cu \\ Hg \end{cases} $	React with oxygen to form oxides	slightly soluble. S ² All sulfides except those of Group 1 and 2 elements and NH ₄ ⁺ are insoluble.
$\begin{cases} \mathbf{Ag} \\ \mathbf{Pt} \\ \mathbf{Au} \end{cases}$	Mostly unreactive	

all ·